Robust Estimation of Multiple Regression Model with Non-normal Error: Symmetric Distribution

نویسندگان

  • Wing-Keung Wong
  • Guorui Bian
چکیده

In this paper, we develop the modified maximum likelihood (MML) estimators for the multiple regression coefficients in linear model with the underlying distribution assumed to be symmetric, one of Student's t family. We obtain the closed form of the estimators and derive their asymptotic properties. In addition, we demonstrate that the MML estimators are more appropriate to estimate the parameters in the Capital Asset Pricing Model by comparing its performance with that of least squares estimators (LSE) on the monthly returns of US portfolios. Our empirical study reveals that the MML estimators are more efficient than the LSE in terms of relative efficiency of one-step-ahead forecast mean square error for small samples. JEL classification: C1; C2; G1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Identification of Smart Foam Using Set Mem-bership Estimation in A Model Error Modeling Frame-work

The aim of this paper is robust identification of smart foam, as an electroacoustic transducer, considering unmodeled dynamics due to nonlinearities in behaviour at low frequencies and measurement noise at high frequencies as existent uncertainties. Set membership estimation combined with model error modelling technique is used where the approach is based on worst case scenario with unknown but...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

On Some Properties and Estimation of a Skew Symmetric Density Function

 In this paper we consider a general setting of skew-symmetric distribution which was constructed by Azzalini (1985), and its properties are presented. A suitable empirical estimator for a skew-symmetric distribution is proposed. In data analysis, by comparing this empirical model with the estimated skew-normal distribution, we show that the proposed empirical model has a better fit in den...

متن کامل

Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function

In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...

متن کامل

Investigation of linear and non-linear estimation methods in highly-skewed gold distribution

The purpose of this work is to compare the linear and non-linear kriging methods in the mineral resource estimation of the Qolqoleh gold deposit in Saqqez, NW Iran. Considering the fact that the gold distribution is positively skewed and has a significant difference with a normal curve, a geostatistical estimation is complicated in these cases. Linear kriging, as a resource estimation method, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005